G4iSLt.rtcT
(* Reflexive_Transitive_Closure stuff, using Type rather than Prop *)
Set Implicit Arguments.
Require Import List.
Import ListNotations.
Require Import gen genT.
(* compare
https://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html
https://coq.inria.fr/stdlib/Coq.Relations.Relation_Operators.html
https://coq.inria.fr/stdlib/Coq.Relations.Operators_Properties.html
Require Import Coq.Relations.Relation_Definitions.
Require Import Coq.Relations.Relation_Operators.
Require Import Coq.Relations.Operators_Properties.
*)
(* this in genT.v in ../lnt/tense-logic-in-Coq
Definition relationT (A : Type) := A -> A -> Type.
*)
Definition transitiveT W (R : relationT W) :=
forall (x y z : W), R x y -> R y z -> R x z.
Check transitiveT.
(* see https://coq.inria.fr/stdlib/Coq.Relations.Relation_Operators.html *)
Section Reflexive_ClosureT.
Variable A : Type.
Variable R : relationT A.
Inductive clos_reflT (x: A) : A -> Type :=
| rT_step (y:A) : R x y -> clos_reflT x y
| rT_refl : clos_reflT x x.
End Reflexive_ClosureT.
Section Reflexive_Transitive_ClosureT.
Variable A : Type.
Variable R : relationT A.
Inductive clos_refl_transT (x:A) : A -> Type :=
| rtT_step (y:A) : R x y -> clos_refl_transT x y
| rtT_refl : clos_refl_transT x x
| rtT_trans (y z:A) :
clos_refl_transT x y -> clos_refl_transT y z -> clos_refl_transT x z.
(* Alternative definition by transitive extension on the left/right *)
Inductive clos_refl_transT_1n (x: A) : A -> Type :=
| rt1nT_refl : clos_refl_transT_1n x x
| rt1nT_trans (y z:A) :
R x y -> clos_refl_transT_1n y z -> clos_refl_transT_1n x z.
Inductive clos_refl_transT_n1 (x: A) : A -> Type :=
| rtn1T_refl : clos_refl_transT_n1 x x
| rtn1T_trans (y z:A) :
R y z -> clos_refl_transT_n1 x y -> clos_refl_transT_n1 x z.
End Reflexive_Transitive_ClosureT.
(* equivalences between above, need to reprove for ...T *)
Lemma clos_rt1n_rtT : forall A R (x y : A),
clos_refl_transT_1n R x y -> clos_refl_transT R x y.
Proof. intros. induction X. apply rtT_refl.
eapply rtT_trans. apply rtT_step. eassumption. eassumption. Qed.
Lemma clos_rt_rt1nT : forall A R (x y : A),
clos_refl_transT R x y -> clos_refl_transT_1n R x y.
Proof. intros. induction X.
eapply rt1nT_trans. eassumption. apply rt1nT_refl.
apply rt1nT_refl.
clear X1 X2. induction IHX1. assumption.
apply IHIHX1 in IHX2. eapply rt1nT_trans ; eassumption. Qed.
Lemma clos_rtn1_rtT : forall A R (x y : A),
clos_refl_transT_n1 R x y -> clos_refl_transT R x y.
Proof. intros. induction X. apply rtT_refl.
eapply rtT_trans. eassumption. apply rtT_step. eassumption. Qed.
Lemma clos_rt_rtn1T : forall A R (x y : A),
clos_refl_transT R x y -> clos_refl_transT_n1 R x y.
Proof. intros. induction X.
eapply rtn1T_trans. eassumption. apply rtn1T_refl.
apply rtn1T_refl.
clear X1 X2. induction IHX2. assumption.
eapply rtn1T_trans ; eassumption. Qed.
(*
Lemma clos_rt_rt1n_iffT : forall A R (x y : A),
clos_refl_transT R x y <-> clos_refl_transT_1n R x y.
Lemma clos_rt_rtn1_iffT : forall A R (x y : A),
clos_refl_transT R x y <-> clos_refl_transT_n1 R x y.
*)