G4iSLt.swappedT
(* Add LoadPath "../tense-lns". *)
Require Import List.
Require Import existsT.
Require Import gen_tacs.
Require Import gen.
Require Import List_lemmasT.
Set Implicit Arguments.
Import ListNotations.
(* Contains definitions and lemmas for swapped swapped_spec and swapped_gen, all used for contraction. *)
Inductive swapped T: list T -> list T -> Type :=
| swapped_I : forall (X Y A B C D : list T),
X = (A ++ B ++ C ++ D) -> Y = (A ++ C ++ B ++ D) -> swapped X Y.
Lemma swapped_I': forall T (A B C D : list T),
swapped (A ++ B ++ C ++ D) (A ++ C ++ B ++ D).
Proof. intros. eapply swapped_I ; reflexivity. Qed.
Lemma swapped_same: forall T X, swapped X (X : list T).
Proof. intros. apply (swapped_I [] [] [] X) ; simpl ; reflexivity. Qed.
Lemma swapped_L: forall T X Y Z,
swapped X (Y : list T) -> swapped (Z ++ X) (Z ++ Y).
Proof. intros until 0; intros X0. inversion X0. subst.
rewrite !(app_assoc Z). apply swapped_I'. Qed.
Lemma swapped_R: forall T X Y Z,
swapped X (Y : list T) -> swapped (X ++ Z) (Y ++ Z).
Proof. intros until 0; intros X0. destruct X0. subst. rewrite <- !app_assoc. apply swapped_I'. Qed.
Lemma swapped_cons: forall T (x : T) Y Z,
swapped Y Z -> swapped (x :: Y) (x :: Z).
Proof.
intros until 0; intros H. destruct H.
subst. repeat rewrite app_comm_cons.
apply swapped_I'.
Qed.
Definition swapped_single T (x : T) := swapped_cons x (swapped_same []).
Lemma swapped_nilLE T Y: @swapped T [] Y -> Y = [].
Proof. intro sw. inversion sw. subst.
repeat (list_eq_ncT ; cD ; subst) ;
simpl ; rewrite ?app_nil_r ; try reflexivity. Qed.
Lemma swapped_nilRE T Y: @swapped T Y [] -> Y = [].
Proof. intro sw. inversion sw. subst.
repeat (list_eq_ncT ; cD ; subst) ;
simpl ; rewrite ?app_nil_r ; try reflexivity. Qed.
Lemma swapped_singleLE T (x : T) Y: swapped [x] Y -> Y = [x].
Proof. intro sw. inversion sw. subst.
acacD'T2 ; subst ; repeat (list_eq_ncT ; cD ; subst) ;
simpl ; rewrite ?app_nil_r ; try reflexivity. Qed.
Lemma swapped_singleRE T (x : T) Y: swapped Y [x] -> Y = [x].
Proof. intro sw. inversion sw. subst.
acacD'T2 ; subst ; repeat (list_eq_ncT ; cD ; subst) ;
simpl ; rewrite ?app_nil_r ; try reflexivity. Qed.
Lemma swapped_simple: forall T U V X Y,
U = X ++ Y -> V = Y ++ X -> swapped U (V : list T).
Proof. intros. subst.
apply (swapped_I [] X Y []) ; simpl ; rewrite app_nil_r ; reflexivity. Qed.
Lemma swapped_simple': forall T X Y, swapped (X ++ Y : list T) (Y ++ X).
Proof. intros. eapply swapped_simple ; reflexivity. Qed.
Lemma swapped_simpleL: forall T X Y Z,
Y = Z -> swapped (X ++ Y) (Z ++ X : list T).
Proof. intros. subst. apply swapped_simple'. Qed.
Lemma swapped_simpleR: forall T X Y Z,
Y = Z -> swapped (Y ++ X) (X ++ Z : list T).
Proof. intros. subst. apply swapped_simple'. Qed.
Lemma swapped_comm : forall {T} (A B : list T),
swapped A B ->
swapped B A.
Proof.
intros T A B H.
inversion H. subst.
eapply swapped_I'.
Qed.
Definition single X (a : X) := [a].
Lemma cons_app_single X (a : X) xs : a :: xs = single a ++ xs.
Proof. unfold single. simpl. reflexivity. Qed.
Lemma single_eq X a : [a : X] = single a.
Proof. unfold single. reflexivity. Qed.
(* note some of the complexity of swap_tac involving cons
may be avoided by rewriting with cons_app_single and single_eq *)
Lemma swapped_Rc2 T A H B C:
swapped C (H ++ [A : T]) -> swapped (C ++ B) (H ++ A :: B).
Proof. intros sw. eapply swapped_R in sw. revert sw.
rewrite <- app_assoc. simpl. intro. eassumption. Qed.
Lemma swapped_Rc1 T A H B C:
swapped (H ++ [A : T]) C -> swapped (H ++ A :: B) (C ++ B).
Proof. intros sw. eapply swapped_R in sw. revert sw.
rewrite <- app_assoc. simpl. intro. eassumption. Qed.
Lemma swapped_ca1 T A H: swapped (A :: H) (H ++ [A : T]).
Proof. pose (swapped_simple' [A] H). simpl in s. exact s. Qed.
Lemma swapped_ca2 T A H: swapped (H ++ [A : T]) (A :: H).
Proof. pose (swapped_simple' H [A]). simpl in s. exact s. Qed.
Lemma swapped_map_ex T U (f : T -> U) xs ys:
swapped (map f xs) ys -> sigT2 (swapped xs) (fun zs => ys = map f zs).
Proof. intro sw. inversion sw. subst. clear sw.
repeat (match goal with | [ H : _ |- _ ] => eapply map_app_ex in H ; cD end).
subst. eexists. apply swapped_I'. rewrite !map_app. reflexivity. Qed.
Lemma swapped_map T U (f : T -> U) xs ys:
swapped xs ys -> swapped (map f xs) (map f ys).
Proof. intro sw. inversion sw. subst. clear sw.
rewrite !map_app. apply swapped_I'. Qed.
(* Sequences of swaps of length n+1. *)
Inductive swapped_spec {T} : nat -> list T -> list T -> Type :=
swapped_spec_I X Y : swapped X Y -> swapped_spec 0 X Y
| swapped_spec_step n A B C :
swapped_spec n A B -> swapped B C -> swapped_spec (S n) A C.
Lemma swapped_spec_refl : forall {T} n (A : list T),
swapped_spec n A A.
Proof.
induction n; intros. econstructor. apply swapped_same.
econstructor. apply IHn.
apply swapped_same.
Qed.
Lemma swapped_app_L : forall {T} n (l A B : list T),
swapped_spec n A B ->
swapped_spec n (l ++ A) (l ++ B).
Proof.
induction n; intros until 0; intros Hswap.
constructor. apply swapped_L. inversion Hswap. auto.
inversion Hswap as [ | ? ? ? ? X X0]. subst.
econstructor. eapply IHn. exact X.
apply swapped_L. assumption.
Qed.
Lemma swapped_spec_trans : forall {T} n1 n2 (l1 l2 l3 : list T),
swapped_spec n1 l1 l2 ->
swapped_spec n2 l2 l3 ->
existsT2 m, swapped_spec m l1 l3.
Proof.
induction n2; intros until 0; intros H1 H2.
inversion H2. subst. exists (S n1).
econstructor. apply H1. assumption.
inversion H2 as [ | ? ? ? ? X X0]. subst.
eapply IHn2 in H1. destruct H1 as [m H1].
exists (S m). econstructor.
apply H1. apply X0. apply X.
Qed.
Lemma swapped_spec_trans_exact : forall {T} n1 n2 (l1 l2 l3 : list T),
swapped_spec n1 l1 l2 ->
swapped_spec n2 l2 l3 ->
swapped_spec (S (n1 + n2)) l1 l3.
Proof.
induction n2; intros until 0; intros H1 H2.
inversion H2 as [? ? X | ]. subst. rewrite PeanoNat.Nat.add_0_r.
econstructor. apply H1. apply X.
inversion H2 as [| ? ? ? ? X X0]. subst.
eapply IHn2 in H1. simpl. econstructor.
rewrite <- PeanoNat.Nat.add_succ_comm.
apply H1. apply X0. assumption.
Qed.
Lemma swapped_spec_comm : forall {T} n (A B : list T),
swapped_spec n A B ->
swapped_spec n B A.
Proof.
induction n; intros until 0; intros H.
constructor. inversion H as [? ? X | ]. subst.
eapply swapped_comm. assumption.
inversion H as [ | ? ? ? ? X X0]. subst.
eapply swapped_comm in X0.
eapply swapped_spec_I in X0.
apply IHn in X.
apply (@swapped_spec_trans_exact T _ _ _ _ _ X0 X).
Qed.
Lemma swapped_spec_conv : forall {T} n m (A B : list T),
n = m ->
swapped_spec n A B ->
swapped_spec m A B.
Proof. intros. subst. auto. Qed.
Lemma swapped_app_mid_L : forall {T} n (A B C D E : list T),
swapped_spec n (A ++ B ++ C ++ D) E ->
swapped_spec (S n) (A ++ C ++ B ++ D) E.
Proof.
intros until 0; intros Hswap.
assert (S n = S (0 + n)) as Hass.
reflexivity.
eapply swapped_spec_conv. symmetry. apply Hass.
eapply swapped_spec_trans_exact.
constructor. apply swapped_I'.
apply Hswap.
Qed.
Lemma swapped_app_mid_R : forall {T} n (A B C D E : list T),
swapped_spec n E (A ++ B ++ C ++ D) ->
swapped_spec (S n) E (A ++ C ++ B ++ D).
Proof.
intros until 0; intros H.
eapply swapped_spec_comm in H.
eapply swapped_spec_comm.
eapply swapped_app_mid_L.
apply H.
Qed.
Lemma swapped_spec_front_mid : forall {T} n (A B C D : list T),
swapped_spec n B (C ++ D) ->
existsT2 m, swapped_spec m (A ++ B) (C ++ A ++ D).
Proof.
intros T n A B C D Hswap.
eapply swapped_app_L in Hswap.
eapply swapped_spec_trans. exact Hswap.
rewrite <- app_nil_l.
eapply swapped_app_mid_R.
apply swapped_spec_refl.
Unshelve. apply 0.
Qed.
Lemma swapped__n_mid : forall {T} m (l Gam1 Gam2 Gam1' Gam2' : list T),
swapped_spec m (Gam1 ++ Gam2) (Gam1' ++ Gam2') ->
existsT2 n, swapped_spec n (Gam1 ++ l ++ Gam2) (Gam1' ++ l ++ Gam2').
Proof.
intros until 0.
intros H. eapply swapped_app_L in H.
rewrite <- app_nil_l in H.
eexists.
replace (Gam1 ++ l ++ Gam2) with (nil ++ Gam1 ++ l ++ Gam2).
replace (Gam1' ++ l ++ Gam2') with (nil ++ Gam1' ++ l ++ Gam2').
eapply swapped_app_mid_R.
eapply swapped_app_mid_L.
eapply H. all : reflexivity.
Qed.
(* Sequences of swaps, length implicit. *)
Inductive swapped_gen {T} Gam Delt :=
swapped_gen_I : (existsT2 n, @swapped_spec T n Gam Delt) -> swapped_gen Gam Delt.
Lemma swapped_gen_front_mid : forall {T} (A B C D : list T),
swapped_gen B (C ++ D) ->
swapped_gen (A ++ B) (C ++ A ++ D).
Proof.
intros T A B C D Hswap. inversion Hswap as [Hs].
destruct Hs as [n Hs].
constructor.
eapply swapped_spec_front_mid. exact Hs.
Qed.
Lemma swapped_spec_opp : forall {T} n (A B C : list T),
swapped_spec n B C ->
swapped A B ->
swapped_spec (S n) A C.
Proof.
intros until 0; intros H1 H2.
eapply swapped_spec_I in H2.
eapply swapped_spec_trans_exact in H1.
2 : eapply H2. auto.
Qed.
Lemma swapped__gen : forall {T} (A B : list T),
swapped A B -> swapped_gen A B.
Proof.
intros T A B H. constructor.
exists 0. constructor. exact H.
Qed.
Lemma swapped_gen_app_L : forall {T} (l A B : list T),
swapped_gen A B ->
swapped_gen (l ++ A) (l ++ B).
Proof.
intros T l A B H. inversion H as [H2].
destruct H2 as [n H2]. constructor.
eapply swapped_app_L in H2. exists n. exact H2.
Qed.
Lemma swapped_gen_refl : forall {T} (A : list T),
swapped_gen A A.
Proof.
intros T A. constructor.
exists 0. apply swapped_spec_refl.
Qed.
(* tactics to identify swapped lists, where one of swap is single list *)
Ltac show_swapped_1 :=
list_assoc_r' ;
try (eapply arg_cong_imp ; [> list_assoc_l' ; reflexivity | ] ;
apply swapped_simpleL ; list_eq_assoc) ;
try (eapply arg1_cong_imp ; [> list_assoc_l' ; reflexivity | ] ;
apply swapped_simpleR ; list_eq_assoc).
Ltac show_swapped_1_ns :=
list_assoc_r ; (* not the ssreflext version *)
try (eapply arg_cong_imp ; [> list_assoc_l' ; reflexivity | ] ;
apply swapped_simpleL ; list_eq_assoc) ;
try (eapply arg1_cong_imp ; [> list_assoc_l' ; reflexivity | ] ;
apply swapped_simpleR ; list_eq_assoc).
(* this should work wherever swap_tac does, but trying to use it in place of
swap_tac produces occasional failures - why?? - to investigate *)
Ltac swap_tac_Rc :=
list_assoc_r ; try (apply swapped_same) ;
repeat (apply swapped_L || apply swapped_cons) ;
list_assoc_l ;
repeat (apply swapped_R || apply swapped_Rc1 || apply swapped_Rc2) ;
(show_swapped_1 || apply swapped_ca2 || apply swapped_ca1).
Ltac swap_tac :=
list_assoc_r ; try (apply swapped_same) ;
repeat (apply swapped_L || apply swapped_cons) ;
list_assoc_l ; repeat (apply swapped_R) ; show_swapped_1.
Ltac swap_tac_ns :=
list_assoc_r ; try (apply swapped_same) ;
repeat (apply swapped_L || apply swapped_cons) ;
list_assoc_l ; repeat (apply swapped_R) ; show_swapped_1_ns.
Goal forall T A B C D, swapped (A ++ B ++ C ++ D : list T) (D ++ A ++ B ++ C).
Proof. intros. show_swapped_1. Qed.
Goal forall T A B C D, swapped (D ++ A ++ B ++ C) (A ++ B ++ C ++ D : list T).
Proof. intros. show_swapped_1. Qed.