G4iSLt.G4iSLT_termination_measure_ImpL

Require Import List.
Export ListNotations.
Require Import PeanoNat.
Require Import Lia.
Require Import Wellfounded.

Require Import general_export.

Require Import G4iSLT_calc.
Require Import G4iSLT_remove_list.
Require Import G4iSLT_list_lems.
Require Import G4iSLT_dec.
Require Import G4iSLT_termination_measure.
Require Import G4iSLT_termination_measure_prelims.
Require Import DLW_WO_list_nat.

(* AtomImpL1 rule *)

Lemma AtomImpL1_le_counter : prem concl, AtomImpL1Rule [prem] concl
        less_than lt (seq_list_occ_weight prem) (seq_list_occ_weight concl).
Proof.
intros. inversion H. subst. simpl. unfold seq_list_occ_weight ; simpl. repeat rewrite unBox_app_distrib ; simpl.
repeat rewrite app_assoc ; simpl. repeat rewrite unBox_app_distrib ; simpl. repeat rewrite app_assoc ; simpl.
destruct (max_weight_list (unBoxed_list Γ0 # P :: unBoxed_list Γ1 unBox_formula A :: unBoxed_list Γ2 [C])). simpl. destruct p.
destruct (max_weight_list (unBoxed_list Γ0 # P :: unBoxed_list Γ1 # P A :: unBoxed_list Γ2 [C])). simpl. destruct p.
assert (x ). apply . intros. apply InT_app_or in ; destruct . apply ; apply InT_or_app ; auto.
inversion i ; subst. assert (weight_form (# P A) ). apply .
apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app ; right ; apply InT_eq.
simpl in . simpl. lia. apply InT_app_or in . destruct . apply .
apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app ; auto. inversion ; subst.
assert (weight_form (# P A) ). apply .
apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app ; right ; apply InT_eq.
simpl in . destruct A ; simpl ; simpl in ; lia. apply InT_app_or in ; destruct ;
apply ; apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app ; auto.
inversion ; subst. 2: apply less_than_lt ; repeat rewrite length_max ; lia.
epose (list_occ_weight_list_swap (unBoxed_list Γ0 # P :: unBoxed_list Γ1) [unBox_formula A] _ ).
simpl in e. repeat rewrite app_assoc in e. simpl in e. rewrite e. clear e.
epose (list_occ_weight_list_swap (unBoxed_list Γ0 # P :: unBoxed_list Γ1) [# P A] _ ).
simpl in e. repeat rewrite app_assoc in e. simpl in e. rewrite e. clear e.
epose (list_occ_weight_list_headlist [unBox_formula A] [# P A] _ ). simpl in .
repeat rewrite app_assoc in . apply less_than_eq. apply . clear . apply list_occ_weight_list_relevant.
destruct (max_weight_list [unBox_formula A]). simpl. destruct p. assert (x ).
apply . intros. apply l. inversion ; subst. apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app ; right ; apply InT_eq.
inversion .
destruct (max_weight_list [# P A]). simpl. destruct p. assert ( ).
apply . intros. apply . apply InT_or_app ; right. inversion ; subst. apply InT_cons ; apply InT_or_app ; right ; apply InT_eq.
inversion . lia.
destruct (max_weight_list [unBox_formula A]). simpl. destruct p.
destruct (max_weight_list [# P A]). simpl. destruct p. assert (x ).
apply . intros. assert (InT (# P A) [# P A]). apply InT_eq. apply in . simpl in .
inversion ; subst. destruct A ; simpl in ; simpl ; lia. inversion .
apply less_than_lt. inversion ; subst. 2: repeat rewrite length_max ; lia.
exfalso. assert (weight_form (# P A) (weight_form A)).
assert (weight_form (# P A) ). apply . apply InT_eq.
assert ( (weight_form A)). apply . intros.
inversion ; subst ; try lia. destruct A ; simpl ; lia. inversion ; subst.
lia. simpl in ; lia.
Qed.


Theorem AtomImpL1_less_thanS : prem concl, AtomImpL1Rule [prem] concl
                                                          (prem << concl).
Proof.
intros. unfold less_thanS. pose (AtomImpL1_le_counter _ _ H) ; auto.
Qed.


(*------------------------------------------------------------------------------------------------------------------------------------------*)

(* AtomImpL2 rule *)

Lemma AtomImpL2_le_counter : prem concl, AtomImpL2Rule [prem] concl
         (less_than lt (seq_list_occ_weight prem) (seq_list_occ_weight concl)).
Proof.
intros. inversion H. subst. simpl. unfold seq_list_occ_weight ; simpl. repeat rewrite unBox_app_distrib ; simpl.
repeat rewrite app_assoc ; simpl. repeat rewrite unBox_app_distrib ; simpl. repeat rewrite app_assoc ; simpl.
destruct (max_weight_list (unBoxed_list Γ0 unBox_formula A :: unBoxed_list Γ1 # P :: unBoxed_list Γ2 [C])). simpl. destruct p.
destruct (max_weight_list (unBoxed_list Γ0 # P A :: unBoxed_list Γ1 # P :: unBoxed_list Γ2 [C])). simpl. destruct p.
assert (x ). apply . intros. apply InT_app_or in ; destruct . apply ; apply InT_or_app ; auto.
inversion i ; subst. assert (weight_form (# P A) ). apply .
apply InT_or_app ; right ; apply InT_eq. simpl in . destruct A ; simpl ; simpl in ; lia.
apply InT_app_or in . destruct . apply .
apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app ; auto. inversion ; subst.
assert (weight_form (# P A) ). apply . apply InT_or_app ; right ; apply InT_eq.
simpl in ; simpl ; lia. apply InT_app_or in ; destruct ;
apply ; apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app ; auto.
inversion ; subst. 2: apply less_than_lt ; repeat rewrite length_max ; lia.
epose (list_occ_weight_list_swap (unBoxed_list Γ0) [unBox_formula A] _ ).
simpl in e. repeat rewrite app_assoc in e. simpl in e. rewrite e. clear e.
epose (list_occ_weight_list_swap (unBoxed_list Γ0) [# P A] _ ).
simpl in e. repeat rewrite app_assoc in e. simpl in e. rewrite e. clear e.
epose (list_occ_weight_list_headlist [unBox_formula A] [# P A] _ ). simpl in .
repeat rewrite app_assoc in . apply less_than_eq. apply . clear . apply list_occ_weight_list_relevant.
destruct (max_weight_list [unBox_formula A]). simpl. destruct p. assert (x ).
apply . intros. apply l. inversion ; subst. apply InT_or_app ; right ; apply InT_eq.
inversion .
destruct (max_weight_list [# P A]). simpl. destruct p. assert ( ).
apply . intros. apply . apply InT_or_app ; right. inversion ; subst. apply InT_eq.
inversion . lia.
destruct (max_weight_list [unBox_formula A]). simpl. destruct p.
destruct (max_weight_list [# P A]). simpl. destruct p. assert (x ).
apply . intros. assert (InT (# P A) [# P A]). apply InT_eq. apply in . simpl in .
inversion ; subst. destruct A ; simpl in ; simpl ; lia. inversion .
apply less_than_lt. inversion ; subst. 2: repeat rewrite length_max ; lia.
exfalso. assert (weight_form (# P A) (weight_form A)).
assert (weight_form (# P A) ). apply . apply InT_eq.
assert ( (weight_form A)). apply . intros.
inversion ; subst ; try lia. destruct A ; simpl ; lia. inversion ; subst.
lia. simpl in ; lia.
Qed.


Theorem AtomImpL2_less_thanS : prem concl, AtomImpL2Rule [prem] concl
                                                          (prem << concl).
Proof.
intros. unfold less_thanS. pose (AtomImpL2_le_counter _ _ H) ; auto.
Qed.


(*------------------------------------------------------------------------------------------------------------------------------------------*)

(* AndImpL rule *)

Lemma AndImpL_le_counter : prem concl, AndImpLRule [prem] concl
         (less_than lt (seq_list_occ_weight prem) (seq_list_occ_weight concl)).
Proof.
intros. inversion H. subst. simpl. unfold seq_list_occ_weight ; simpl. repeat rewrite unBox_app_distrib ; simpl.
repeat rewrite app_assoc ; simpl. repeat rewrite unBox_app_distrib ; simpl. repeat rewrite app_assoc ; simpl.
destruct (max_weight_list (unBoxed_list Γ0 A B C :: unBoxed_list Γ1 [D])). simpl. destruct p.
destruct (max_weight_list (unBoxed_list Γ0 (A B) C :: unBoxed_list Γ1 [D])). simpl. destruct p.
assert (x ). apply . intros. apply InT_app_or in ; destruct . apply ; apply InT_or_app ; auto.
inversion i ; subst. assert (weight_form ((A B) C) ). apply .
apply InT_or_app ; right ; apply InT_eq. simpl in . simpl. lia.
apply InT_app_or in . destruct . apply .
apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app ; auto. inversion ; subst.
apply . apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app ; auto. inversion .
inversion ; subst. 2: apply less_than_lt ; repeat rewrite length_max ; lia.
epose (list_occ_weight_list_swap (unBoxed_list Γ0) [A B C] _ ).
simpl in e. repeat rewrite app_assoc in e. simpl in e. rewrite e. clear e.
epose (list_occ_weight_list_swap (unBoxed_list Γ0) [(A B) C] _ ).
simpl in e. repeat rewrite app_assoc in e. simpl in e. rewrite e. clear e.
epose (list_occ_weight_list_headlist [A B C] [(A B) C] _ ). simpl in .
repeat rewrite app_assoc in . apply less_than_eq. apply . clear . apply list_occ_weight_list_relevant.
destruct (max_weight_list [A B C]). simpl. destruct p. assert (x ).
apply . intros. apply l. inversion ; subst. apply InT_or_app ; right ; apply InT_eq.
inversion .
destruct (max_weight_list [(A B) C]). simpl. destruct p. assert ( ).
apply . intros. apply . apply InT_or_app ; right. inversion ; subst. apply InT_eq.
inversion . lia.
destruct (max_weight_list [A B C]). simpl. destruct p.
destruct (max_weight_list [(A B) C]). simpl. destruct p. assert (x ).
apply . intros. assert (InT ((A B) C) [(A B) C]). apply InT_eq. apply in . simpl in .
inversion ; subst. simpl in ; simpl ; lia. inversion .
apply less_than_lt. inversion ; subst. 2: repeat rewrite length_max ; lia.
exfalso. assert (weight_form ((A B) C) (weight_form (A B C))).
assert (weight_form ((A B) C) ). apply . apply InT_eq.
assert ( (weight_form (A B C))). apply . intros.
inversion ; subst ; try lia. inversion ; subst. lia. simpl in ; lia.
Qed.


Theorem AndImpL_less_thanS : prem concl, AndImpLRule [prem] concl
                                                          (prem << concl).
Proof.
intros. unfold less_thanS. pose (AndImpL_le_counter _ _ H) ; auto.
Qed.


(*------------------------------------------------------------------------------------------------------------------------------------------*)

(* OrImpL rule *)

Lemma OrImpL_le_counter : prem concl, OrImpLRule [prem] concl
         (less_than lt (seq_list_occ_weight prem) (seq_list_occ_weight concl)).
Proof.
intros. inversion H. subst. simpl. unfold seq_list_occ_weight ; simpl. repeat rewrite unBox_app_distrib ; simpl.
repeat rewrite app_assoc ; simpl. repeat rewrite unBox_app_distrib ; simpl. repeat rewrite app_assoc ; simpl.
destruct (max_weight_list (unBoxed_list Γ0 A C :: unBoxed_list Γ1 B C :: unBoxed_list Γ2 [D])). simpl. destruct p.
destruct (max_weight_list (unBoxed_list Γ0 (A B) C :: unBoxed_list Γ1 unBoxed_list Γ2 [D])). simpl. destruct p.
assert (x ). apply . intros. apply InT_app_or in ; destruct . apply ; apply InT_or_app ; auto.
inversion i ; subst. assert (weight_form ((A B) C) ). apply .
apply InT_or_app ; right ; apply InT_eq. simpl in . simpl. lia.
apply InT_app_or in . destruct . apply .
apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app ; auto. inversion ; subst.
assert (weight_form ((A B) C) ). apply .
apply InT_or_app ; right ; apply InT_eq. simpl in . simpl. lia.
apply . apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app ; auto.
inversion ; subst. 2: apply less_than_lt ; repeat rewrite length_max ; lia.
epose (list_occ_weight_list_swap (unBoxed_list Γ0) [A C] _ ).
simpl in e. repeat rewrite app_assoc in e. simpl in e. rewrite e. clear e.
epose (list_occ_weight_list_swap (A C :: unBoxed_list Γ0 unBoxed_list Γ1) [B C] _ ).
simpl in e. repeat rewrite app_assoc in e. simpl in e. rewrite e. clear e.
epose (list_occ_weight_list_swap (unBoxed_list Γ0) [(A B) C] _ ).
simpl in e. repeat rewrite app_assoc in e. simpl in e. rewrite e. clear e.
epose (list_occ_weight_list_headlist [B C; A C] [(A B) C] _ ). simpl in .
repeat rewrite app_assoc in . apply less_than_eq. apply . clear .
apply list_occ_weight_list_relevant.
destruct (max_weight_list [B C; A C]). simpl. destruct p. assert (x ).
apply . intros. apply l. inversion ; subst.
apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app ; right ; apply InT_eq.
inversion ; subst. apply InT_or_app ; right ; apply InT_eq. inversion .
destruct (max_weight_list [(A B) C]). simpl. destruct p. assert ( ).
apply . intros. apply . apply InT_or_app ; right. inversion ; subst. apply InT_eq.
inversion . lia.
destruct (max_weight_list [B C; A C]). simpl. destruct p.
destruct (max_weight_list [(A B) C]). simpl. destruct p. assert (x ).
apply . intros. assert (InT ((A B) C) [(A B) C]). apply InT_eq. apply in . simpl in .
inversion ; subst. simpl in ; simpl ; lia. inversion ; subst. simpl in ; simpl ; lia. inversion .
apply less_than_lt. inversion ; subst. 2: repeat rewrite length_max ; lia.
exfalso. assert (weight_form ((A B) C) Nat.max (weight_form (B C)) (weight_form (A C))).
assert (weight_form ((A B) C) ). apply . apply InT_eq.
assert ( Nat.max (weight_form (B C)) (weight_form (A C))). apply . intros.
inversion ; subst ; try lia. inversion ; subst ; try lia. inversion . lia. simpl in ; lia.
Qed.


Theorem OrImpL_less_thanS : prem concl, OrImpLRule [prem] concl
                                                          (prem << concl).
Proof.
intros. unfold less_thanS. pose (OrImpL_le_counter _ _ H) ; auto.
Qed.


(*------------------------------------------------------------------------------------------------------------------------------------------*)

(* ImpImpL rule *)

Lemma ImpImpL_le_counter : prem1 prem2 concl, ImpImpLRule [; ] concl
                (less_than lt (seq_list_occ_weight ) (seq_list_occ_weight concl)) *
                (less_than lt (seq_list_occ_weight ) (seq_list_occ_weight concl)).
Proof.
intros. inversion H. subst. simpl. unfold seq_list_occ_weight ; simpl. repeat rewrite unBox_app_distrib ; simpl.
repeat rewrite app_assoc ; simpl.
destruct (max_weight_list (unBoxed_list Γ0 B C :: unBoxed_list Γ1 [A B])). simpl. destruct p.
destruct (max_weight_list (unBoxed_list Γ0 (A B) C :: unBoxed_list Γ1 [D])). simpl. destruct p.
destruct (max_weight_list (unBoxed_list Γ0 unBox_formula C :: unBoxed_list Γ1 [D])). simpl. destruct p.
assert (x ). apply . intros. apply InT_app_or in . destruct . apply ; apply InT_or_app ; auto.
inversion i ; subst. assert (weight_form ((A B) C) ). apply . apply InT_or_app ; right ; apply InT_eq.
simpl in . simpl. lia. apply InT_app_or in ; destruct . apply .
apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app ; auto. inversion ; subst. assert (weight_form ((A B) C) ).
apply . apply InT_or_app ; right ; apply InT_eq. simpl in . simpl. lia. inversion .
assert ( ). apply . intros. apply InT_app_or in . destruct . apply ; apply InT_or_app ; auto.
inversion i ; subst. assert (weight_form ((A B) C) ). apply . apply InT_or_app ; right ; apply InT_eq.
simpl in . destruct C ; simpl ; simpl in ; lia. apply . apply InT_or_app ; right ; apply InT_cons ; auto.
split.
- destruct . 2: apply less_than_lt ; repeat rewrite length_max ; lia.
  apply less_than_eq.
  epose (list_occ_weight_list_swap (unBoxed_list Γ0) [B C] _ x).
  simpl in e. repeat rewrite app_assoc in e. rewrite e. clear e.
  epose (list_occ_weight_list_swap (B C :: unBoxed_list Γ0 unBoxed_list Γ1) [A B] [] x).
  simpl in e. repeat rewrite app_nil_end in e. repeat rewrite app_assoc in e. rewrite e. clear e.
  epose (list_occ_weight_list_swap (unBoxed_list Γ0) [(A B) C] _ x).
  simpl in e. repeat rewrite app_assoc in e. rewrite e. clear e.
  epose (list_occ_weight_list_split (A B :: [B C]) [(A B) C] (unBoxed_list Γ0 unBoxed_list Γ1) (unBoxed_list Γ0 unBoxed_list Γ1 [D]) x).
  simpl in . apply . clear .
  apply list_occ_weight_list_relevant.
  destruct (max_weight_list [A B; B C]). simpl. destruct p. assert ( x).
  apply . intros. apply l. inversion ; subst.
  apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app ; right ; apply InT_eq.
  inversion ; subst. apply InT_or_app ; right ; apply InT_eq. inversion .
  destruct (max_weight_list [(A B) C]). simpl. destruct p. assert ( x).
  apply . intros. apply . apply InT_or_app ; right. inversion ; subst. apply InT_eq.
  inversion . lia.
  destruct (max_weight_list [A B; B C]). simpl. destruct p.
  destruct (max_weight_list [(A B) C]). simpl. destruct p. assert ( ).
  apply . intros. assert (InT ((A B) C) [(A B) C]). apply InT_eq. apply in . simpl in .
  inversion ; subst. simpl in ; simpl ; lia. inversion ; subst. simpl in ; simpl ; lia. inversion .
  apply less_than_lt. inversion ; subst. 2: repeat rewrite length_max ; lia.
  exfalso. assert (weight_form ((A B) C) Nat.max (weight_form (A B)) (weight_form (B C))).
  assert (weight_form ((A B) C) ). apply . apply InT_eq.
  assert ( Nat.max (weight_form (A B)) (weight_form (B C))). apply . intros.
  inversion ; subst ; try lia. inversion ; subst ; try lia. inversion . lia. simpl in ; lia.
  epose (list_occ_weight_list_swap (unBoxed_list Γ0 unBoxed_list Γ1) [D] [] x).
  simpl in e. repeat rewrite app_assoc in e. rewrite e. clear e. clear . rewrite app_nil_end.
  epose (list_occ_weight_list_headlist [] [D] _ x).
  simpl in . apply . clear . apply list_occ_weight_list_relevant.
  destruct (max_weight_list []). simpl. destruct p. assert ( x).
  apply . intros. inversion .
  destruct (max_weight_list [D]). simpl. destruct p. assert ( x).
  apply . intros. apply . apply InT_or_app ; right. inversion ; subst.
  apply InT_cons ; apply InT_or_app ; right ; apply InT_eq. inversion . lia.
  destruct (max_weight_list []). simpl. destruct p.
  destruct (max_weight_list [D]). simpl. destruct p. assert ( ).
  apply . intros. assert (InT D [D]). apply InT_eq. apply in . simpl in .
  inversion ; subst. apply less_than_lt. inversion ; subst. 2: repeat rewrite length_max ; lia.
  exfalso. assert (weight_form D 0). assert (weight_form D ). apply . apply InT_eq.
  assert ( 0). apply . intros. inversion ; subst ; try lia. simpl ; lia. destruct D ; simpl in ; lia.
- destruct . 2: apply less_than_lt ; repeat rewrite length_max ; lia.
  apply less_than_eq.
  epose (list_occ_weight_list_swap (unBoxed_list Γ0) [unBox_formula C] _ ).
  simpl in e. repeat rewrite app_assoc in e. rewrite e. clear e.
  epose (list_occ_weight_list_swap (unBoxed_list Γ0) [(A B) C] _ ).
  simpl in e. repeat rewrite app_assoc in e. rewrite e. clear e.
  epose (list_occ_weight_list_headlist [unBox_formula C] [(A B) C] _ ).
  simpl in . apply . clear . apply list_occ_weight_list_relevant.
  destruct (max_weight_list [unBox_formula C]). simpl. destruct p. assert ( ).
  apply . intros. inversion ; subst. assert (weight_form ((A B) C) ). apply .
  apply InT_or_app ; right ; apply InT_eq. destruct C ; simpl in ; simpl ; lia. inversion .
  destruct (max_weight_list [(A B) C]). simpl. destruct p. assert ( ).
  apply . intros. apply . apply InT_or_app ; right. inversion ; subst. apply InT_eq.
  inversion . lia.
  destruct (max_weight_list [unBox_formula C]). simpl. destruct p.
  destruct (max_weight_list [(A B) C]). simpl. destruct p. assert ( ).
  apply . intros. assert (InT ((A B) C) [(A B) C]). apply InT_eq. apply in . simpl in .
  inversion ; subst. destruct C ; simpl in ; simpl ; lia. inversion .
  apply less_than_lt. inversion ; subst. 2: repeat rewrite length_max ; lia.
  exfalso. assert (weight_form ((A B) C) (weight_form (unBox_formula C))).
  assert (weight_form ((A B) C) ). apply . apply InT_eq.
  assert ( (weight_form (unBox_formula C))). apply . intros.
  inversion ; subst ; try lia. inversion ; subst ; try lia. lia. destruct C ; simpl in ; lia.
Qed.


Theorem ImpImpL_less_thanS : prem1 prem2 concl, ImpImpLRule [;] concl
                                                          (( << concl) * ( << concl)).
Proof.
intros. unfold less_thanS. pose (ImpImpL_le_counter _ _ _ H). destruct p ; auto.
Qed.


(*------------------------------------------------------------------------------------------------------------------------------------------*)

(* BoxImpL rule *)

Lemma BoxImpL_le_counter : prem1 prem2 concl, BoxImpLRule [; ] concl
                (less_than lt (seq_list_occ_weight ) (seq_list_occ_weight concl)) *
                (less_than lt (seq_list_occ_weight ) (seq_list_occ_weight concl)).
Proof.
intros. inversion H. subst. simpl. unfold seq_list_occ_weight ; simpl. repeat rewrite unBox_app_distrib ; simpl.
repeat rewrite app_assoc ; simpl. repeat rewrite unBox_app_distrib ; simpl. repeat rewrite app_assoc ; simpl.
destruct (max_weight_list (unBoxed_list (unBoxed_list Γ0) unBox_formula B :: unBoxed_list (unBoxed_list Γ1) [A; A])). simpl. destruct p.
destruct (max_weight_list (unBoxed_list Γ0 Box A B :: unBoxed_list Γ1 [C])). simpl. destruct p.
destruct (max_weight_list (unBoxed_list Γ0 unBox_formula B :: unBoxed_list Γ1 [C])). simpl. destruct p.
assert (x ).
{ apply . intros. apply InT_app_or in ; destruct .
  apply unBoxed_list_weight_form with (l:=(unBoxed_list Γ0)) ; auto. intros.
  apply ; apply InT_or_app ; auto.
  inversion i ; subst. assert (weight_form (Box A B) ). apply . apply InT_or_app ; right ; apply InT_eq.
  destruct B ; simpl in ; simpl ; lia. apply InT_app_or in ; destruct .
  apply unBoxed_list_weight_form with (l:=(unBoxed_list Γ1)) ; auto. intros.
  apply ; apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app ; auto.
  assert (weight_form (Box A B) ). apply . apply InT_or_app ; right ; apply InT_eq.
  simpl in . inversion ; subst ; try lia. inversion ; subst ; try lia. inversion . }
assert ( ).
{ apply . intros. apply InT_app_or in . destruct . apply ; apply InT_or_app ; auto.
  inversion i ; subst. assert (weight_form (Box A B) ). apply . apply InT_or_app ; right ; apply InT_eq.
  simpl in . destruct B ; simpl ; simpl in ; lia. apply . apply InT_or_app ; right ; apply InT_cons ; auto. }
split.
- destruct . 2: apply less_than_lt ; repeat rewrite length_max ; lia.
  apply less_than_eq.
  epose (list_occ_weight_list_swap (unBoxed_list Γ0 Box A B :: unBoxed_list Γ1) [C] [] x).
  simpl in e. repeat rewrite app_nil_end in e. repeat rewrite app_assoc in e. simpl in e. rewrite e. clear e.
  epose (list_occ_weight_list_swap (C :: unBoxed_list Γ0) [Box A B] _ x).
  simpl in e. repeat rewrite app_assoc in e. simpl in e. rewrite e. clear e.
  epose (list_occ_weight_list_swap (unBoxed_list (unBoxed_list Γ0)) [unBox_formula B] _ x).
  simpl in e. repeat rewrite app_assoc in e. simpl in e. rewrite e. clear e.
  epose (list_occ_weight_list_swap (unBox_formula B :: (unBoxed_list (unBoxed_list Γ0)) (unBoxed_list (unBoxed_list Γ1))) [A; A] [] x).
  simpl in e. repeat rewrite app_nil_end in e. repeat rewrite app_assoc in e. simpl in e. rewrite e. clear e.
  epose (list_occ_weight_list_split (A :: A :: [unBox_formula B]) [Box A B] _ _). simpl in . apply . clear .
  + apply list_occ_weight_list_relevant.
    destruct (max_weight_list [A; A ; unBox_formula B]). simpl. destruct p. assert ( x).
    apply . intros. assert (weight_form (Box A B) x). apply . apply InT_or_app ; right ; apply InT_eq.
    inversion ; subst. simpl in ; lia. inversion ; subst ; simpl in ; try lia.
    inversion ; subst. destruct B ; simpl ; simpl in ; try lia. inversion .
    destruct (max_weight_list [Box A B]). simpl. destruct p. assert ( x).
    apply . intros. apply . apply InT_or_app ; right. inversion ; subst. apply InT_eq. inversion . lia.
    destruct (max_weight_list [A; A ; unBox_formula B]). simpl. destruct p.
    destruct (max_weight_list [Box A B]). simpl. destruct p. assert ( ).
    apply . intros. assert (weight_form (Box A B) ). apply . apply InT_eq.
    simpl in . inversion ; subst. lia. inversion ; subst. lia. inversion ; subst.
    destruct B ; simpl ; simpl in ; lia. inversion .
    apply less_than_lt. inversion ; subst. 2: repeat rewrite length_max ; lia.
    exfalso. assert (weight_form (Box A B) Nat.max (weight_form A) (weight_form (unBox_formula B))).
    assert (weight_form (Box A B) ). apply . apply InT_eq.
    assert ( Nat.max (weight_form A) (weight_form (unBox_formula B))). apply . intros.
    inversion ; subst ; try lia. inversion ; subst ; try lia. inversion ; subst ; try lia. inversion .
    lia. destruct B ; simpl in ; lia.
  + repeat rewrite unBox_app_distrib ; simpl.
     assert (proj1_sigT2 (max_weight_list (unBoxed_list (Γ0 Γ1))) x).
     destruct (max_weight_list (unBoxed_list (Γ0 Γ1))). simpl ; destruct p.
     apply . intros. apply . repeat rewrite unBox_app_distrib in . apply InT_app_or in .
     destruct . apply InT_or_app ; auto. apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app ; auto.
     repeat rewrite unBox_app_distrib.
     pose (unBoxed_list_effective_or_not _ _ ). destruct s.
    * repeat rewrite unBox_app_distrib in e. rewrite e.
      epose (list_occ_weight_list_headlist [] [C] _ x). simpl in . apply . clear . apply list_occ_weight_list_relevant.
      destruct (max_weight_list []). simpl. destruct p. assert ( x). apply . intros. inversion .
      destruct (max_weight_list [C]). simpl. destruct p. assert ( x).
      apply . intros. apply . apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app. inversion ; subst ; auto. lia.
      destruct (max_weight_list []). simpl. destruct p. apply less_than_lt.
      destruct (max_weight_list [C]). simpl. destruct p. assert ( ).
      apply . intros. inversion . inversion ; subst. 2: repeat rewrite length_max ; lia.
      exfalso. assert (weight_form C 0). assert (weight_form C ). apply . apply InT_eq.
      assert ( 0). apply . intros. inversion ; subst ; try lia. simpl ; lia. destruct C ; simpl in ; lia.
   * epose (list_occ_weight_list_split [] [C] (unBoxed_list (unBoxed_list Γ0) unBoxed_list (unBoxed_list Γ1))
     (unBoxed_list Γ0 unBoxed_list Γ1) x). apply ; auto.
     clear . apply list_occ_weight_list_relevant ; clear .
     destruct (max_weight_list []). simpl. destruct p. assert ( x). apply . intros. inversion .
     destruct (max_weight_list [C]). simpl. destruct p. assert ( x).
     apply . intros. apply . apply InT_or_app ; right ; apply InT_cons ; apply InT_or_app. inversion ; subst ; auto. lia.
     destruct (max_weight_list []). simpl. destruct p. apply less_than_lt.
     destruct (max_weight_list [C]). simpl. destruct p. assert ( ).
     apply . intros. inversion . inversion ; subst. 2: repeat rewrite length_max ; lia.
     exfalso. assert (weight_form C 0). assert (weight_form C ). apply . apply InT_eq.
     assert ( 0). apply . intros. inversion ; subst ; try lia. simpl ; lia. destruct C ; simpl in ; lia.
     repeat rewrite unBox_app_distrib in . auto.
- destruct . 2: apply less_than_lt ; repeat rewrite length_max ; lia.
  apply less_than_eq.
  epose (list_occ_weight_list_swap (unBoxed_list Γ0) [unBox_formula B] _ ).
  simpl in e. repeat rewrite app_assoc in e. rewrite e. clear e.
  epose (list_occ_weight_list_swap (unBoxed_list Γ0) [Box A B] _ ).
  simpl in e. repeat rewrite app_assoc in e. rewrite e. clear e.
  epose (list_occ_weight_list_headlist [unBox_formula B] [Box A B] _ ).
  simpl in . apply . clear . apply list_occ_weight_list_relevant.
  destruct (max_weight_list [unBox_formula B]). simpl. destruct p. assert ( ).
  apply . intros. inversion ; subst. assert (weight_form (Box A B) ). apply .
  apply InT_or_app ; right ; apply InT_eq. destruct B ; simpl in ; simpl ; lia. inversion .
  destruct (max_weight_list [Box A B]). simpl. destruct p. assert ( ).
  apply . intros. apply . apply InT_or_app ; right. inversion ; subst. apply InT_eq.
  inversion . lia.
  destruct (max_weight_list [unBox_formula B]). simpl. destruct p.
  destruct (max_weight_list [Box A B]). simpl. destruct p. assert ( ).
  apply . intros. assert (InT (Box A B) [Box A B]). apply InT_eq. apply in . simpl in .
  inversion ; subst. destruct B ; simpl in ; simpl ; lia. inversion .
  apply less_than_lt. inversion ; subst. 2: repeat rewrite length_max ; lia.
  exfalso. assert (weight_form (Box A B) (weight_form (unBox_formula B))).
  assert (weight_form (Box A B) ). apply . apply InT_eq.
  assert ( (weight_form (unBox_formula B))). apply . intros.
  inversion ; subst ; try lia. inversion ; subst ; try lia. lia. destruct B ; simpl in ; lia.
Qed.


Theorem BoxImpL_less_thanS : prem1 prem2 concl, BoxImpLRule [;] concl
                                                          (( << concl) * ( << concl)).
Proof.
intros. unfold less_thanS. pose (BoxImpL_le_counter _ _ _ H). destruct p ; auto.
Qed.